Follow Us:

Hadoop Training in Chennai


Course Duration

40 HOURS Sign in with Facebook Sign in with Facebook

Course Contents

Hadoop
    Big Data, Hadoop, Introduction to Hadoop Architecture and HDFS
  • Rise of Big Data
  • Compare Hadoop vs traditonal systems
  • Core components of Hadoop
  • Hadoop Master-Slave Architecture
  • Understanding HDFS Architecture
  • NameNode, DataNode, Secondary Node
  • Learn about JobTracker, TaskTracker
  • Installing and setting up a Hadoop Cluster
  • Hadoop deployment Modes - Standalone, Single node, Multinode
  • Configuration files in a Hadoop Cluster
  • Important Web URL’s for Hadoop
  • Manual for installation of Hadoop
  • Manual for Demo VM installation
  • Manual for Multinode Hadoop Cluster installation on AWS
  • Understanding Hadoop MapReduce Framework
  • Overview of the MapReduce Framework
  • Use cases of MapReduce
  • MapReduce Architecture
  • Concept of Mappers, Reducers
  • Anatomy of MapReduce Program
  • Mapper/Reducer Class, Driver code
  • Understand Combiner and Partitioner
  • Advance MapReduce - Part 1
  • Write your own Partitioner
  • Writing Map and Reduce in Python
  • Map Side Join
  • Distributed Join
  • Distributed Cache
  • Reduce Side Join
  • Counters
  • Joining Multiple datasets in MapReduce
  • Advance MapReduce - Part 2
  • MapReduce internals
  • Understanding Input Format
  • Custom Input Format
  • MapReduce API
  • Hadoop Data Types
  • Using Writable and Writable comparable
  • Understanding Output Format
  • Sequence Files
  • JUnit and MRUnit Testing Frameworks
  • Apache Pig
  • PIG vs MapReduce
  • PIG components
  • PIG execution
  • PIG Data types
  • PIG Architecture
  • PIG Latin Relational Operators
  • PIG Latin Join and CoGroup
  • PIG Latin Group and Union
  • Describe, Explain, Illustrate
  • PIG Latin: File Loaders
  • PIG Latin: Creating UDF
  • Apache Hive and HiveQL
  • What is Hive
  • Hive DDL - Create/Show/Drop Database
  • Hive DDL - Create/Show/Drop Tables
  • Hive DML - Load Files into Tables
  • Hive DML - Inserting Data into Tables
  • Hive SQL - Select, Filter, Join, Group By
  • Hive Architecture & Components
  • Hive Data Model and Data Units
  • Difference between Hive and RDBMS
  • Advance HiveQL
  • Multi-Table Inserts
  • Joins
  • Grouping Sets, Cubes, Rollups
  • Custom Map and Reduce scripts
  • Hive SerDe
  • Hive UDF
  • Hive UDAF
  • Apache Flume, Apache Sqoop, Apache Oozie
  • Sqoop - How Sqoop works
  • Import/Export Data
  • Sqoop Architecture
  • Flume - How it works
  • Flume Complex Flow - Calculation/ Multiplexing
  • Oozie - Simple/Complex Flow
  • Oozie - Components
  • Oozie Service/ Scheduler
  • Example Workflow
  • Use Cases - Time and Data triggers
  • Running/Debuggin a Coordinator Job
  • Bundle
  • NoSQL Databases
  • Introduction to NoSQL
  • CAP theorem
  • RDBMS vs NoSQL
  • Analytical (OLAP)
  • Key Value stores: Memcached, Riak
  • Key Value stores: Redis, Dynamo DB
  • Column Family: Cassandra, HBase
  • Graph Store: Neo4J
  • Document Store: MarkLogic,MongoDB
  • Document Store: CouchBase,CouchDB,Exist DB
  • Apache HBase
  • When/Why to use HBase
  • HBase Architecture/Storage
  • HBase Features
  • HBase Data Model
  • HBase Families
  • Terms and Daemons
  • HBase Master
  • HBase vs RDBMS
  • Column Families
  • Access HBase Data
  • HBase API
  • Runtime modes
  • Running HBase
  • Apache Zookeeper
  • What is Zookeeper
  • Who is using it
  • Zookeeper Data Model
  • ZNode versions
  • Zookeeper API
  • ZNokde Types
  • Sequential ZNodes
  • Security
  • Standalone/Clustered mode
  • Installing and Configuring
  • Running Zookeeper
  • Zookeeper use cases
  • Hadoop 2.0, YARN, MRv2
  • Hadoop 1.0 Limitations
  • MapReduce Limitations
  • History of Hadoop 2.0
  • HDFS 2: Architecture
  • HDFS 2: Quorum based storage
  • HDFS 2: High availability
  • HDFS 2: Federation
  • YARN Architecture
  • Classic vs YARN
  • YARN Apps
  • YARN multitenancy
Register Now

You will Learn How To :

Course Benefits :

Register Now

Please use the form below to make your career excellent.